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Count data are generated by processes 
yielding non-negative integers 
exclusively. In simpler terms, this 
data type encompasses only non-

negative and integer values (e.g., 0,1,2,…). Counts 
denote the frequency of event occurrences within 
fixed time intervals, exemplified by weekly cholera 
counts reported per locality, emergencies in referral 
or secondary care hospitals, and antenatal care  
(ANC) visits.

While the Poisson model is conventionally used 
for count data analysis, it is considered constrained 
by the requirement for mean and variance equality. 
In medical research, count outcomes with equal 
mean and variance are rare. The negative binomial 
model, an alternative to the Poisson, accommodates 

over-dispersion (variance exceeding the mean). 
When over-dispersion involves zeros, models like the 
generalized Poisson (GP), hurdle, and zero-inflated 
models are recommended.1,2 Over-dispersion 
attributed to zeros is tackled using mixture models 
and two-part models such as hurdle and zero-inflated 
models.3,4 The GP model can substitute a mixture 
model and two part-part models for over-dispersed 
count responses due to zeros. The GP model based 
on maximum likelihood estimation, is versatile for 
both over-dispersed and under-dispersed data.5,6

Ordinal variables in medical research often express 
patient characteristics, attitudes, behavior, or status. 
These variables have natural ordering among their 
levels like cancer stages (I, II, III, IV), pain levels (0–
10 Likert scale), satisfaction levels (very dissatisfied, 
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A B S T R AC T
Objectives: In medical research, the study’s design and statistical methods are pivotal, as 
they guide interpretation and conclusion. Selecting appropriate statistical models hinges 
on the distribution of the outcome measure. Count data, frequently used in medical 
research, often exhibit over-dispersion or zero inflation. Occasionally, count data are 
considered ordinal (with a maximum outcome value of 5), and this calls for the application 
of ordinal regression models. Various models exist for analyzing over-dispersed data such 
as negative binomial, generalized Poisson (GP), and ordinal regression model. This study 
aims to examine whether the GP model is a superior alternative to the ordinal logistic 
regression (OLR) model, specifically in the context of zero-inflated Poisson models using 
both simulated and real-time data. Methods: Simulated data were generated with varied 
estimates of regression coefficients, sample sizes, and various proportions of zeros. The GP 
and OLR models were compared using fit statistics. Additionally, comparisons were made 
using real-time datasets. Results: The simulated results consistently revealed lower bias 
and mean squared error values in the GP model compared to the OLR model. The same 
trend was observed in real-time datasets, with the GP model consistently demonstrating 
lower standard errors. Except when the sample size was 1000 and the proportions of 
zeros were 30% and 40%, the Bayesian information criterion consistently favored the 
GP model over the OLR model. Conclusions: This study establishes that the proposed 
GP model offers a more advantageous alternative to the OLR model. Moreover, the GP 
model facilitates easier modeling and interpretation when compared to the OLR model.



O M A N  M E d  J,  V O L  3 9 ,  N O 1 ,  JA N uA Ry  2 0 2 4

B i jes h  ya dav,  et  a l .

*Corresponding author: prof.ljey@gmail.com Copyright © 2024, Oman Medical Journal

dissatisfied, neutral, satisfied, very satisfied), and 
Likert scales measurements in questionnaire surveys 
(strongly disagree, disagree, agree, strongly agree) 
among others. A major assumption for ordinal data 
is the constant effect of an independent variable 
on the response variable with a unit increase in the 
independent variable’s level. Essentially, the values 
are presumed equally distanced and ordered.

Ordinal outcomes are analyzed using ordinal 
logistic regression (OLR) when specific conditions 
are met.7,8 When the interest lies in ordinal outcomes 
that adhere to the proportionality assumption, and 
the independent variables are categorical, ordinal, or 
continuous, analysis options include Poisson, zero-
inflated Poisson (ZIP), hurdle Poisson, negative 
binomial models, and proportional odds (PO) 
models.9 However, studies reveal that medical 
research often fails to present or analyze statistical 
data, especially ordinal data, according to the 
structure of the data.10–12

Many types of ordinal models have been 
developed, with the most common being the PO 
and the continuation ratio models. In this paper, we 
focus solely on the PO model.13 Both models employ 
maximum likelihood techniques to estimate odds 
ratios (ORs) but differ in their dichotomizations, 
referred to as ῾cut-points’. While both models 
assume homogeneity across cut-points and calculate 
a single OR, the PO model extends binary logistic 
regression for binary outcomes to handle ordinal 
outcomes.13,14 It is also named as cumulative logit 
model, built on the assumption of identical log ORs 
across cut-points. At each cut-point, for example, the 
level of severity is categorized as case and non-case. 
The OR of an exposure variable (level of severity) for 
any of these comparisons will be equal irrespective of 
cut-point is made. In other words, OR is invariant to 
the dichotomization of the outcome. The PO model 
assumes that in the hypothetical population from 
which this sample was drawn, the ORs from each of 
the two possible dichotomies are the same.

In cases of ordinal responses where the absence 
of symptoms or disease activity leads to a substantial 
proportion of zeros, resulting in skewed outcomes, 
traditional statistical techniques can yield biased 
findings. In such scenarios, count models prove to 
be more appropriate.

The GP model serves as a replacement for the 
mixture model and two part-part models for over-
dispersed count responses involving zeros. The GP 

model, based on maximum likelihood estimation, is 
suitable for both over-dispersed and under-dispersed 
data.5,6 In a study by yusuf and ugalahi,6 Poisson, 
negative binomial, and GP were compared to find 
the best fit for over-dispersed ANC visit counts 
that involve zeros. Among the three models, GP 
exhibited the lowest fit statistics values, including 
log-likelihood, Akaike Information Criteria (AIC), 
and Bayesian Schwartz Information Criteria (BIC), 
indicating its suitability for identifying parameters 
related to ANC visits.

yadav et al,15 compared GP, mixture Poisson, 
mixture negative binomial, and ZIP models in terms 
of fit statistics such as bias, mean square error (MSE), 
AIC, and BIC, using both real-time and simulated 
data. This study showed that GP provides lower 
values of all fit statistics and identifies as a better 
model. Hence, the goal of this study was to ascertain 
whether the GP model was a better alternative to the 
OLR model in zero-inflated outcomes, using both 
simulated and real-time data. 

M ET H O D S
The Poisson model has been widely employed for 
count data analysis. The probability mass function 
of the Poisson model is given by:

ƒ(y,θ) =
θye-ɵ

, y = 0,1,2,..., θ > 0
y!

 The Poisson model is characterized by a single 
parameter distribution. Its mean and variance are 
equal. In the Poisson regression model, the focus 
is on modeling the conditional mean E (θ|x). The 
expected outcome in terms of the log function 
is expressed as θ = exp (xβ), where θ is mean, x is 
independent variables, and β stands for the regression 
parameters.16 

For over-dispersed or under-dispersed count 
data, the GP regression model may prove beneficial. 
It assumes that the outcome variable yi follows a 
probability mass function:

ƒ(yi, θi, δ) =
θi(θi+ δyi)yi-1e-ɵi -δ yi

, yi = 0,1,2,...
yi!

Where θi > 0 and max (−1,− θi /4) < δ < 1. The 
mean and variance of the GP model are defined as:

Mean(ųi) = E(yi) =
θi

(1-δ)
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Variance (yi) =
θi =

1
E(yi) = φE(yi)(1-δ)3 (1-δ)2

Where φ = 1/(1 − δ)2 is a dispersion factor. When 
δ = 0, the model becomes equidispersed, reducing to 
the Poisson model with parameter θi. For δ > 0, over-
dispersion is present, and for δ < 0, under-dispersion 
is observed.17

In practice, the often-used OLR model is the 
PO model, also referred to as the cumulative logit 
model. The PO model is invariant to collapsing 
categories, a technique often used to summarize 
results.18 For instance, for an outcome variable 
with four categories, assuming three ways to divide 
these categories into two collapsed categories while 
maintaining the natural order, merging groups 0 and 
3 for comparison with groups 1 and 2 is not valid, as 
it disrupts the inherent order. If an ordinal response 
variable d has G levels (d = 0, 1, 2. . ., G-1), there 
are G -1 ways to dichotomize the response outcome 
(e.g., d ≥ 1 vs. d < 1; d ≥ 2 vs. d < 2, ..., d ≥ G-1 vs. 
d < G-1). The odds that d ≥ g are defined as:

odds(d ≥ g) =
P(d ≥ g)

P(d < g)

Here, g = 1, 2, 3. . . G-1. An essential assumption 
of this model is that the OR remains constant when 
calculated across different cut points. For example, 
OR (d ≥ 1) = OR (d ≥ 3).19

For model evaluation, AIC and BIC are used 
[Box 1]. Both models are based on the maximum 
likelihood estimates, with lower values indicating 
better model fit. The AIC is defined as:

AIC = -2L + 2k
Where L is log-likelihood and k is number of 

parameters in the model (including variables and 
intercept).

Similarly, BIC is given by: BIC  = -2L + k log (n)
Where L is log-likelihood, k is number of 

parameters (including intercept), and n is number 
of rating classes or number of model observations.20

The commonest criterion for evaluating a 
statistical model’s performance is based on its 
accuracy in fitting the data. The MSE is a widely used 
measure of accuracy, where a smaller value indicates 
a more accurate and reliable model.

MSE =
1 n 

∑
i = 1

(yi−ŷi)2n

Where n represents the sample size.

For the initial simulation study, we assessed 
the models under varying sample sizes. To assess 
how well the GP model and ordinal model fit 
data exhibiting varying degrees of zero inflation 
(10%, 20%, 30%, 40%, and 50%), we generated 
five simulated datasets with varying sample sizes 
(100, 250, 500, 750, and 1000) while maintaining 
fixed regression estimates (intercept = 0.5 and  
slope = 1). The independent variable x was generated 
from binomial distribution with n observations. 
Additionally, an error was generated with a mean of 
zero and a variance of 0.03. using this independent 
variable x and the error term, the dependent variable 
was generated as a linear combination with fixed 
regression estimates (intercept = 0.5 and slope = 1). 
This resultant mean was considered as the population 
mean. The antilog of the predicted estimate from the 
regression equation represented the mean. using 
this mean, the dependent variable (y) was generated 
using the package ZIP (gamlss.dist) in R software. 
Subsequently, the dependent variable (y) and 
independent variable (x) were combined. The GP 
model and OLR model were then compared across 
varying proportions of zeros and different sample 
sizes. This entire process was repeated 1000 times, 
and the median values of fit statistics were reported 
in the Simulation Table 1. Model comparison was 
based on bias, MSE, AIC, and BIC, where the 
better model exhibited smaller AIC, BIC, Bias, and  
MSE values.

Three real-time studies were used including: 1) 
Fir, 2) decayed, missing, and filled teeth (dMF), 
and 3) acute diarrheal disease (Add). Multiple 
datasets were chosen to apply GP and OLR models 

Box 1: Model preference in terms of AIC and BIC.

Difference of AIC 
between models A & B

Result if model A < model B

> 0.1–≤ 2.5 No difference in model
> 2.5–≤ 6.0 Choose model A if n > 256
> 6.0–≤ 9.0 Choose model A if n > 64
> 9 Choose model A

Difference of BIC 
between two models

Model preference

0–2 Weak
2–6 Positive
6–10 Strong
> 10 Very strong

AIC: Akaike Information Criteria; BIC: Bayesian Schwartz Information 
Criteria.
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to scenarios ranging from small to large numbers of 
observations.

The "Fir" dataset was sourced from R’s ‘boot 
package’ and contained 50 observations. This study 
aimed to tally the number of balsam-fir seedlings 
within all quadrants of grid of a 50 five-foot square 
grid.21 The dMF study constituted a cross-sectional 
analysis of 440 children’s caries. Its objective was to 
elucidate the oral health status and preventive dental 
habits of children across different age groups. The 
dMF count distribution was skewed positively due 
to the high incidence of zero counts among children 
without caries experience.22 The Add dataset, 
comprising 3720 cases, was reported from Chennai’s 

communicable disease hospital from 2008 to 2010. 
This data was extracted from patients’ case histories 
across 155 wards in Chennai.

R E SU LTS
The simulation results presented in Table 1 indicate 
the performance of the GP and OLR models across 
varying sample sizes and proportions of zeros. 
The following observations were made based on  
these results. 

Sample size 100: The GP model generally 
exhibited lower bias, MSE, and BIC estimates than 
the OLR model. AIC values were slightly lower at the 

Table 1: Simulation based on zero-inflated Poisson.

Sample 
sizes

Generalized Poisson model Ordinal logistic regression model

Bias MSE AIC BIC Bias MSE AIC BIC

10% zeros
100 -2.42E-09 2.87 365 373 1.86 6.86 368 393
250 -1.49E-09 2.94 908 919 2.03 7.50 911 949
500 -1.08E-09 2.96 1813 1826 2.09 7.72 1817 1864
750 -7.85E-10 2.97 2714 2727 2.11 7.85 2718 2772
1000 -8.37E-10 2.97 3621 3635 2.10 7.84 3623 3682

20% zeros
100 -7.23E-09 3.15 363 371 2.01 7.43 364 388
250 -2.08E-09 3.26 903 914 2.05 7.60 901 938
500 -1.35E-09 3.27 1805 1817 2.08 7.69 1794 1841
750 -7.09E-09 3.28 2703 2717 2.08 7.69 2686 2740
1000 -7.71E-10 3.28 3607 3622 2.08 7.70 3582 3641

30% zeros
100 -3.68E-09 3.32 351 360 2.01 7.46 350 374
250 -2.47E-09 3.42 876 887 2.06 7.68 867 903
500 -1.55E-09 3.42 1749 1761 2.06 7.66 1726 1772
750 -1.32E-09 3.44 2621 2635 1.96 7.44 2586 2640
1000 -1.21E-09 3.43 3493 3508 1.95 7.44 3443 3500

40% zeros
100 -4.08E-09 3.33 332 339 2.36 8.90 328 351
250 -2.63E-09 3.44 826 836 2.48 10.00 812 848
500 -1.87E-09 3.42 1647 1660 2.50 10.17 1615 1662
750 -1.43E-09 3.44 2464 2469 2.49 10.22 2415 2478
1000 -1.10E-09 3.44 3288 3302 2.50 10.25 3218 3276

50% zeros
100 -3.48E-09 3.21 303 311 2.20 8.37 297 320
250 -2.49E-09 3.29 754 764 2.25 8.67 736 771
500 -1.75E-09 3.28 1515 1510 2.25 8.69 1464 1510
750 -1.48E-09 3.29 2246 2242 2.25 8.68 2190 2260
1000 -1.21E-09 3.28 2998 2976 2.25 8.70 2920 3012

MSE: mean square error; AIC: Akaike Information Criteria; BIC: Bayesian Schwartz Information Criteria.
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30%, 40%, and 50% of the zeros in the OLR model, 
but not significantly. The details of the preference of 
a better model based on AIC value were presented 
in the methods.

Sample size 250: Similar to the sample size 100, 
the GP model yielded lower values for bias, MSE, 
and BIC, with slightly lower AIC values in the  
OLR model.

Sample size 500 and 750: The bias, MSE, and 
BIC estimates were lower in the GP model, while 
the AIC values were either lower or not significantly 
different in the OLR model.

Sample size 1000: The GP model consistently 
showed lower bias, MSE, and BIC estimates compared 
to the OLR model. However, the AIC values were 
lower in the OLR model for this sample size.

The GP model consistently provided lower bias 
and MSE values compared to the OLR model across 
various sample sizes and proportions of zeros. The 
BIC estimates were generally lower in the GP model, 

except for specific cases in the sample size 1000 and 
zeros at 30% and 40%. The AIC values were mostly 
slightly lower in the OLR model or nearly equal in 
both models. Figures 1 and 2 visually represent the 
variation of BIC and MSE with different sample 
sizes and proportions of zeros. The AIC values 
were slightly lower in OLR or almost equal in  
both models.

The results from three real-time studies are 
shown in Table 2. The mean (variance) of the studies 
fir, dMF and Add were 2.1 (2.4), 3.4 (25.9) and 
1.7 (19.5), respectively. The proportion of observed 
zeros of the outcome was 14%, 45.5% and 60% in 
the fir, dMF and Add studies, respectively. The 
outcome of studies were over-dispersed and inflated 
by zeros according to Poisson model.

Fir data: The Fir dataset (50 observations) 
demonstrated lower regression coefficients, standard 
errors (SE), AIC, and BIC values in the GP model 
compared to the OLR model.
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Figure 1: Bayesian Schwartz Information Criteria (BIC) with varying sample sizes and varying proportions 
of zeros.
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DMF data: In the dMF dataset (440 
observations), the GP model showed lower 
regression coefficients and SE for the gender variable, 
along with lower AIC and BIC values.

ADD data :  The Add dataset (3720 
observations) also displayed lower regression 
coefficients and SE for the gender variable in the GP 
model, alongside lower AIC and BIC estimates.

Across all three real-time datasets, the GP 
model consistently yielded lower SE, suggesting 
better precision than the OLR model. The OLR 
model tended to overestimate regression estimates 
compared to the GP model. Furthermore, the AIC 
and BIC values consistently favored the GP model 
over the OLR model, indicating a better model fit 
in terms of these criteria.

D I S C U S S I O N
Researchers commonly use OLR for outcomes that 
are count variables. In nature, the count outcome is 

ordinal in structure.9 In such situations, it is ideal to 
fit models that are suitable for ordinal data with or 
without zeros. While there are many models available 
for count data analysis, it is important to find which 
model fits the data well in terms of AIC, BIC, and 
other goodness of fit statistics.

Ordinal regression models have a long-standing 
history in statistics, offering flexibility in modeling 
ordinal count outcomes and in aiding model 
selection.23,24 We have suggested a new statistical GP 
model tailored for over-dispersed count responses 
inflated by zeros.

Manuguerra and Heller applied ordinal 
regression to continuous outcomes derived from 
visual analog scales used in pain assessment.25 A 
common method for analyzing visual analog scales 
responses involves grouping and treating them as 
discrete ordinal responses. This study also assessed 
the health-related quality of life in breast cancer 
patients after chemotherapy, utilizing Linear Analog 
Self-Assessment scales. Pain assessment outcomes 

Table 2: Results from three real-time data.

Datasets Generalized Poisson model Ordinal logistic regression model

N b SE AIC BIC b SE AIC BIC

Fir 50 - 0.021 0.073 184 190 - 0.130 0.183 188 201
dMF 440 - 0.052 0.123 1937 2009 - 0.083 0.174 1997 2031
Add 3720 - 0.092 0.051 11604 11623 - 0.117 0.064 11635 11909

SE: standard error; AIC: Akaike Information Criteria; BIC: Bayesian Schwartz Information Criteria; DMF: decayed, missing, and filled teeth; ADD: acute 
diarrheal disease.
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Figure 2: Mean square error (MSE) with varying sample sizes and varying proportions of zeros.
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were analyzed in two ways: ordinal responses using an 
ordinal model, and continuous responses employing 
a parametric g function. Similarly, the quality of life 
outcome was compared between parametric and 
non-parametric g functions. The GP model emerges 
as a suitable alternative for such response types.

Kelley and Anderson introduced a mixture model 
for zero-inflated ordinal outcomes resulting from 
“never” responses.18 They compared the effectiveness 
of different models, including PO, partial PO, and 
ZIPO, using real-time alcohol consumption data. 
The AIC value was slightly lower in the ZIPO 
model. In our earlier work on simulation and real-
time studies, GP was a better model for zero-inflated 
outcome compared with mixture Poisson, mixture 
negative binomial, and ZIP in terms of fit statistics.15 
However, this study compared the performance of 
GP with OLR, and it has shown that the GP model 
is better as compared to the OLR model.

Our objective was to present a suitable method 
that enables researchers to more accurately 
analyze ordinal response outcomes using the GP 
model. GP could be a better alternative to the 
ordinal model. Limited studies have explored the 
application of ordinal models to count data. Our 
research consistently demonstrates the GP model's 
superiority to the OLR model, across both real and  
simulated data.

Our study acknowledges certain limitations, 
such as the absence of integration of the GP 
regression method into standard software like SPSS, 
which may require researchers to use R or Python. 
Furthermore, the reasons behind divergent findings 
in cases involving 1000 observations with outcome 
proportions of 30% and 40% remain unexplained. 
The scarcity of comparable studies also poses  
a limitation.

C O N C LU S I O N
The GP model consistently outperforms the OLR 
model in terms of bias, MSE, and BIC estimates. The 
AIC estimates were almost similar or slightly lower in 
the OLR model. despite the ease of use of the OLR 
model, the proposed GP model is recommended due 
to its better modeling accuracy and interpretation. 
Our study suggests that the GP model is a superior 
choice for analyzing ordinal count data compared 
to the OLR model, offering improved accuracy and 
ease of interpretation.
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